A 3-D variational assimilation scheme in coupled transport-biogeochemical models: Forecast of Mediterranean biogeochemical properties
نویسندگان
چکیده
[1] Increasing attention is dedicated to the implementation of suitable marine forecast systems for the estimate of the state of the ocean. Within the framework of the European MyOcean infrastructure, the pre-existing short-term Mediterranean Sea biogeochemistry operational forecast system has been upgraded by assimilating remotely sensed ocean color data in the coupled transport-biogeochemical model OPATM-BFM using a 3-D variational data assimilation (3D-VAR) procedure. In the present work, the 3D-VAR scheme is used to correct the four phytoplankton functional groups included in the OPATM-BFM in the period July 2007 to September 2008. The 3D-VAR scheme decomposes the error covariance matrix using a sequence of different operators that account separately for vertical covariance, horizontal covariance, and covariance among biogeochemical variables. The assimilation solution is found in a reduced dimensional space, and the innovation for the biogeochemical variables is obtained by the sequential application of the covariance operators. Results show a general improvement in the forecast skill, providing a correction of the basin-scale bias of surface chlorophyll concentration and of the local-scale spatial and temporal dynamics of typical bloom events. Further, analysis of the assimilation skill provides insights into the functioning of the model. The computational costs of the assimilation scheme adopted are low compared to other assimilation techniques, and its modular structure facilitates further developments. The 3D-VAR scheme results especially suitable for implementation within a biogeochemistry operational forecast system.
منابع مشابه
Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis
In biogeochemical models coupled to ocean circulation models, vertical mixing is an important physical process which governs the nutrient supply and the plankton residence in the euphotic layer. However, vertical mixing is often poorly represented in numerical simulations because of approximate parameterizations of sub-grid scale turbulence, wind forcing errors and other mis-represented process...
متن کاملAdaptive Coupled Physical and Biogeochemical Ocean Predictions: A Conceptual Basis
Physical and biogeochemical ocean dynamics can be intermittent and highly variable, and involve interactions on multiple scales. In general, the oceanic fields, processes and interactions that matter thus vary in time and space. For efficient forecasting, the structures and parameters of models must evolve and respond dynamically to new data injected into the executing prediction system. The co...
متن کاملAssimilation of ocean colour data into a Biogeochemical Flux Model of the Eastern Mediterranean Sea
An advanced multivariate sequential data assimilation system has been implemented within the framework of the European MFSTEP project to fit a three-dimensional biogeochemical model of the Eastern Mediterranean to satellite chlorophyll data from the Sea-viewing Wide Field-ofview Sensor (SeaWiFS). The physics are described by the Princeton Ocean Model (POM) while the biochemistry of the ecosyste...
متن کاملRegional ocean data assimilation.
This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models a...
متن کاملA singular evolutive interpolated Kalman filter for efficient data assimilation in a 3-D complex physical–biogeochemical model of the Cretan Sea
A singular evolutive interpolated Kalman (SEIK) filter is used to assimilate pseudo-observations via twin simulation experiments in a complex three-dimensional coupled physical–biogeochemical model of the Cretan Sea. The simulation system comprises two on-line coupled sub-models: the three-dimensional Princeton Model and the European Regional Seas Ecosystem Model (ERSEM). In the SEIK filter, th...
متن کامل